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Abstract 

To apply electromyography (EMG) signals in human-computer interfaces, features extracted from raw EMG data are the 

significant stage to achieve the high classification accuracy in EMG pattern recognition. Although most of the successful 

features in the classification of movements associated with EMG signals are features calculated in time-domain, features 

extracted from frequency-domain are still necessary to yield maximum class separability in feature space. Due to a low 

quality feature space of frequency-domain EMG features, an addition of such features results in increasing a little 

classification accuracy. Hence, in this research, the improving quality of frequency-domain EMG features in space is 

presented. Wavelet packet transform method is used to make the useful sub-band EMG components. Four popular frequency-

domain features, i.e. mean frequency (MNF), median frequency (MDF), peak frequency (PKF) and power spectrum ratio 

(PSR), were calculated from each sub-band EMG component and were evaluated their feature space quality using separability 

measure i.e. RES (the ratio of Euclidean distance and standard deviation) index. The experimental results showed that the 

classification performance of MNF and PKF extracted from the reconstructed EMG signal based on the 2nd level 

approximation 6th order Daubechies's wavelet coefficients was improved by twice compared with the traditional MNF and 

PKF. This finding was also found in the classification of MDF and PSR extracted from the reconstructed EMG signal based 

on the first level approximation coefficients with the 5th and the 7th order Daubechies wavelets, respectively. For single 

features, the proposed MDF outperforms others, and the accuracy (RES index = 10.71) is comparable to successful time-

domain EMG features, such as mean absolute value (RES index = 8.93), zero crossing rate (RES index = 10.36), and 

waveform length (RES index = 11.68). As a single feature in EMG pattern recognition cannot reach the best performance and 

for a more powerful feature vector, the proposed MDF should be combined with other successful time-domain EMG features 

in future works.  
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1. Introduction 

Many input source of data or signals can be used for human-computer interfaces (HCIs). Surface 

electromyography (sEMG) signals generated by the human muscles are widely used in HCIs, particularly for 

powered upper-limb prostheses, electric power wheelchairs, and virtual keyboard and mouse [1]. To apply sEMG 

signals in HCIs, features extracted from raw sEMG data are the significant stage to achieve the high classification 

accuracy in EMG pattern recognition [2] because the raw sEMG data contain both useful and unwanted 

information. EMG features can be computed both in time domain and in frequency domain. Although most of the 

successful features in the classification of movements associated with EMG signals are time-domain features, 

frequency-domain features are still necessary to yield the maximum class separability in feature space [3]. 

However, an addition of frequency-domain EMG features results in increasing a little classification accuracy due 

to a low quality feature space of such features [4]. Hence, the quality of frequency-domain EMG features in 

space should be improved. 

Based on one of our previous works [5], a discrete wavelet transform (DWT) method is used to generate a 

useful subset of frequency components (or scales) from sEMG signals. The results show that several time-domain 

features extracted from the suitable sub-band reconstructed sEMG signals yield improved class separability in 

feature space. However, the classification performance of frequency-domain features i.e. mean and median 

frequencies does not improve using the DWT method [6]. In this research, wavelet packet transform (WPT) 

method is used to make the useful sub-band EMG components. 

Although DWT and WPT decompose the raw sEMG signal into some multi-resolution components according 

to a basis function called ―wavelet function‖, the difference between DWT and WPT is that WPT offers more 

range of possibilities for signal analysis than DWT [7]. This may be a reason that the class separability of MNF 

and MDF features does not improve using DWT. Therefore, in this study the usefulness of extracting sub-band 

EMG components using WPT has been investigated and used instead of using DWT. Four popular frequency-

domain features [3], i.e. MNF, MDF, peak frequency (PKF) and power spectrum ratio (PSR), were calculated 

from each sub-band EMG component and were evaluated their feature space quality using separability measure 

i.e. RES (the ratio of Euclidean distance and standard deviation) index [8]. 

2. Materials and Methods 

Firstly, the description of sEMG data that were used to evaluate the proposed methods is presented. SEMG 

data recorded during six motions from two channels were used as a representative data. Secondly, the definition 

of four frequency-domain EMG features is provided in detail. Thirdly, the procedure of extracting the proposed 

frequency-domain features is presented together with the principle of wavelet transform. The evaluating function 

i.e. RES index is shown in the fourth sub-section. 

2.1 SEMG data acquisition and experiments 

The representative sEMG data were collected when the volunteer performed six motions: hand open (HO), 

hand close (HC), wrist flexion (WF), wrist extension (WE), forearm pronation (FP) and forearm supination (FS). 

Such motions are usually employed in the study of powered upper-limb prostheses [1, 3, 7]. Two muscles on 

forearm consisting flexor carpi radialis (FCR) and extensor carpi radialis longus (ECRL) were selected to 

provide both flexor and extensor muscles (or information). EMG data picked up by the disposal bipolar 

electrodes (3M Red Dot Monitoring Electrode 2223) on the right arm with an inter-electrode distance of 20 mm. 

In the experiment, ten datasets were collected for each motion with a duration of 256 ms. It should be noted that 

for the real-time response in myoelectric prosthesis control system, the response time should be less than 300 ms 

[1, 3, 7]. Hence, the EMG data in this study contain only short dynamic motions or transient signals. The 

measurement system was set the sampling frequency (fs) at 1000 Hz, the resolution at 16 bits, the band-pass filter 

at 10-500 Hz, and the amplifier gain at 60-dB. 
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2.2 Frequency-domain EMG features 

Frequency- (or spectral-) domain features are mostly deployed in the study of motor unit recruitment and 

muscle fatigue. However, frequency-domain features are still needful to provide useful information for the 

recognition of motions associated with sEMG signals. EMG information in frequency-domain can be provided 

by power spectral density (PSD). PSD can be estimated using either Periodogram or parametric methods i.e. the 

auto-regressive (AR) model [9]. Frequency-domain EMG features can be defined as the characteristic variables, 

such as mean, median, peak, or sum. The definition of all frequency-domain features is described in the 

following. 

Mean frequency (MNF) is defined as sum of product of the EMG power spectrum and the frequency divided 

by total sum of the spectrum intensity [4]. This definition is also similar to the spectral center of gravity and 

central frequency (fc) [10]. It is given by 
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where fj and Pj are respectively the frequency of spectrum and the power spectrum at frequency bin j, and M 

is the length of frequency bin. 

Median frequency (MDF) is defined as a frequency at which the EMG spectrum is divided into two regions 

with equal amplitude [4]. This definition is similar to a half of total power feature [3]. It is given by 
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Peak frequency (PKF) is defined as a frequency at which the maximum EMG power occurs [3]. 

max( ),jPKF P j = 1, ...,M     (3) 

Power spectrum ratio (PSR) is defined as a ratio between the energy P0 which is nearby the maximum value 

of EMG power spectrum and the energy P which is the whole energy of EMG power spectrum. PSR can be seen 

as an extension version of PKF and frequency ratio (FR) [11]. It can be defined as 
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where f0 is a feature value of the PKF and n is the integral limit. In this study, n is set at 20. 

2.3 Sub-band EMG components using WPT 

The extraction of traditional frequency-domain EMG features is generally calculated from the EMG power 

spectrum which is computed from the raw EMG signals. However, in this research, the EMG power spectrums P 

in all equations, (1)-(4), were computed from the reconstructed EMG signals that were performed by the WPT 

method. The procedure of the proposed algorithm is shown in Fig. 1. However, two wavelet parameters, i.e. 

wavelet function and decomposition level, must be optimized to achieve the high performance of wavelet 

transform. These parameters are implemented in the wavelet decomposition and reconstruction steps as shown in 

Fig. 1. Nine sub-types of the Daubechies orthogonal wavelets (Db2-Db10) were selected together with four 

levels of decomposition to be evaluated in this experiment. The Daubechies (Db) wavelet family was suggested 

by several previous works as the most suitable wavelet for the analysis of sEMG signals [12, 13]. 
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Fig. 1. The procedure of the extraction of frequency-domain EMG features from the reconstructed sEMG signals 

  

Fig. 2. WPT decomposition tree from 4 decomposition levels 

To understand the usefulness of sub-band reconstructed sEMG signals, a brief description of WPT is 

presented. WPT iteratively transforms the sEMG signal into multi-resolution subsets of coefficients. Firstly, the 

raw sEMG (S) is passed through a high-pass filter and a low-pass filter to yield a detailed coefficient subset 

(cD1) and an approximation coefficient subset (cA1) at the first level, then both detailed and approximation 

coefficient subsets are performed the repetitious transformation to achieve a multi-resolution analysis. The 

process is duplicated until the desired final level is yielded. The coefficients of the filters depend on types of the 

wavelet function i.e. Db2-Db10. 

It should be noticed that each of the wavelet coefficient subsets (2 from the first level, 4 from the second 

level, 8 from the third level, and 16 from the fourth level) is computed by using the inverse WPT method in order 

to obtain the reconstructed sEMG signals instead of computing from all the wavelet coefficient subsets as 

implemented in the traditional algorithm [5, 6]. Each subset has the different frequency contents. The frequency 

band of the approximation and detail coefficient subsets at the first level (cA1 and cD1) can be calculated as fcA1 = 

[0, 2
-2

·fs] and fcD1 = [2
-2

·fs, 2
-1

·fs], where fs is 1000 Hz. Each level increased, the frequency content of both 

frequency bands is reduced to half, for example, fcD1 = [250, 500] Hz and thus fcAD2 = [250, 375]. In this study, all 

the calculations were computed using the MATLAB software. 

2.4 Evaluating functions 

Many previous works suggested [2, 14] that a high quality EMG features should have three properties: 

maximum class separability, robustness, and complexity. In this study, only the first property was focused. 

However, the development of the others can be found in one of our previous works [4]. While much of the work 

presented in literature focus on the evaluation of EMG features by imposing features onto the classifiers and 
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measuring the classification rate, the evaluation of EMG features by separability measure i.e. RES index is used 

in this study because the optimal features by using the first criterion depends on the classifier type [14]. 

RES index can investigate the distance between two scatter groups (a separation index) and directly address 

the variation of feature space in the same group (a compactness index) [15]. Each group refers to one of the 

combinations between six motions and two EMG channels. It is defined as the ratio of Euclidean distance and 

standard deviation. More details can be found in [8]. 

Table 1. The optimal wavelet component for each combination of 4 frequency-domain features (MNF, MDF, PKF, PSR) and 9 wavelet 

functions (Db2-Db10), and the baseline feature (extracting from raw sEMG data) with its RES index. Note that italic fonts and numbers show 

the highest RES index case. 

MNF Baseline Db2 Db3 Db4 Db5 Db6 Db7 Db8 Db9 Db10 

Component All AA2 AA2 AA2 AA2 A1 AA2 AA2 AA2 AA2 

RES index 5.48 9.09 8.09 9.21 9.37 8.64 8.89 9.11 8.76 9.04 

MDF Baseline Db2 Db3 Db4 Db5 Db6 Db7 Db8 Db9 Db10 

Component All AA2 A1 AA2 AA2 A1 A1 A1 A1 A1 

RES index 5.38 10.34 9.82 9.64 10.10 10.71 10.60 10.17 10.16 9.90 

PKF Baseline Db2 Db3 Db4 Db5 Db6 Db7 Db8 Db9 Db10 

Component All AA2 AA2 AA2 AA2 AA2 AA2 AA2 AA2 AAA3 

RES index 3.80 5.63 4.58 6.00 6.39 5.23 5.61 6.08 4.87 4.96 

PSR Baseline Db2 Db3 Db4 Db5 Db6 Db7 Db8 Db9 Db10 

Component All A1 A1 A1 A1 A1 A1 A1 A1 A1 

RES index 4.99 6.03 5.88 5.87 6.17 6.34 6.55 6.40 6.27 6.15 

3. Results and Discussion 

Table 1 shows RES indices for all features and wavelet functions with the optimal wavelet component. The 

experimental results clearly showed the effectiveness of the proposed algorithm for improving the class 

separability of frequency-domain EMG features. Several interesting points can be observed and summarized 

from the table as follows: 

1) All features extracted from the reconstructed sEMG signals by the proposed algorithm, or WPT, always 

have the RES indices higher than that of features extracted from the raw sEMG signals (Baseline) for all wavelet 

functions (Db2-Db10). The difference between the RES indices of the best combination case and the baseline 

case ranged from 1.56 (PSR) to 5.33 (MDF). The classification performance of MDF extracted from the 

reconstructed sEMG signal based on the 1st level approximation 6th order Daubechies’s wavelet coefficients 

was improved by twice compared with the traditional MDF. 

2) Based on the comparison of four features, the RES indices that sorted in order from highest to lowest are 

10.71 (MDF with A1 of Db6), 9.37 (MNF with AA2 of Db5), 6.55 (PSR with A1 of Db7), and 6.39 (PKF with 

AA2 of Db5). It means that MDF has the best performance, followed closely by MNF. PSR and PKF show worse 

classification performance compared to the first two features. 

 3) The optimal wavelet components for four features are the lower region of EMG spectrum: AA2 (0-125 Hz) 

for MNF and PFK, and A1 (0-250 Hz) for MDF and PSR. The finding results in this study are different compared 

to the results found in [16]. In that study, feature proposed is the spectral magnitude average (SMA). The SMA 

feature extracted from the EMG spectrum region (75-250 Hz) performs much better than the full spectrum (0-

250 Hz). However, the EMG spectrum is computed by short-time Thomson transform (STTT). 

To evaluate the results found in [16], the additional experiment was performed based on our proposed 

algorithm, or WPT. The results are shown in Table 2. From the table, it is obviously shown that the highest RES 

index is 10.83 in the case of DA2 (125-250 Hz) with Db7. This finding is quite similar to the result found in [16]. 

However, as suggested in one of our previous works [3], SMA or mean power (MNP) feature has the same 
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cluster separability as time-domain features based on energy information but the quality of feature in space of 

SMA is lower than that of time-domain features. Therefore, SMA is not recommended to be deployed in the 

optimal feature vector. 

Table 2. The optimal wavelet component for SMA with 9 wavelet functions (Db2-Db10), and the baseline feature (extracting from raw 

sEMG data) with its RES index. Note that italic fonts and numbers show the highest RES index case 

SMA Baseline Db2 Db3 Db4 Db5 Db6 Db7 Db8 Db9 Db10 

Component All DA2 DD2 D1 D1 DA2 DA2 DA2 DA2 DD2 

RES index 8.91 8.51 10.09 9.63 9.28 9.35 10.83 9.97 9.69 10.04 

4) For single features, the proposed MDF feature outperforms others, and the classification performance is 

comparable to successful time-domain EMG features that are extracted from raw sEMG signals, such as mean 

absolute value (MAV), zero-crossing rate (ZCR), and waveform length (WL). The results are presented in Table 3. 

As a single feature in EMG pattern recognition cannot reach the best performance and for a more powerful 

feature vector [1-3], the proposed MDF should be combined with other successful time-domain EMG features 

i.e. WL and ZC in future works. 

Table 3. RES indices of 4 proposed frequency-domain features extracted from the optimal wavelet component and 3 traditional time-domain 

features consisting MAV, WL, and ZC 

Feature MNF MDF PKF PSR MAV WL ZC 

EMG Data AA2 with Db5 A1 with Db6 AA2 with Db5 A1 with Db7 Raw Raw Raw 

RES index 9.37 10.71 6.39 6.55 8.93 11.68 10.36 

4. Concluding Remarks and Future Works 

The main benefit of WPT is that it generates a useful subset of frequency components. Noises and unwanted 

components were efficiently eliminated. Although most of the previous works used full EMG spectrum, in this 

study only the most effective spectrum component was used and performed much better than the traditional one. 

The reconstructed sEMG signals from the lower region of EMG spectrum are suitable for the extraction of 

frequency-domain features, particularly for the MDF feature.  

In future works, the extraction of several successful time-domain EMG features based on the WPT method 

should be evaluated and the investigating the feasibility of implementing the proposed features in real-world 

applications should be done. 
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