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Abstract 

In this research, we propose a new discrete Markov chain model of binary exponential backoff Algorithm (BEB) for 

distributed coordination function (DCF) in IEEE802.11 wireless local area networks (WLANs). A new model uses Fixed 

Backoff stages and Fixed Contention windows (FBFC) technique on carrier sensing multiple accesses with collision 

avoidance and request-to-send clear-to-send protocol (CSMA/CA RTS CTS). The throughput efficiency of FBFC model is 

compared with the legacy discrete Markov chain model of BEB Algorithm. The legacy model is called Bianchi’s model 

which is the original model for performance analysis of WLAN system. The FBFC model represents a new mathematical 

summation of the transmission probability parameter which can calculate the average saturation throughput of 

IEEE802.11a/b/g WLAN standards. The accuracy of transmission probability parameter is derived step by step under the 

global balance equation concept. The saturation throughputs of all models are compared under the same Physical layer (PHY) 

parameters and the same medium access control (MAC) scheme. Our numerical results show that the saturation throughput 

performance of FBFC technique is stable when the number of contending stations is increased in service area, or the WLAN 

system is in the high traffic load conditions. The distinction of FBFC scheme is low complexity and more realistic than the 

previous discrete Markov chain model.        
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1. Introduction 

Today, the wireless local area network (WLAN) is becoming increasingly important, and the IEEE802.11 is 

one of the most popular standards in WLAN systems. Currently, the wireless local area networks solve the 
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collision problems by using backoff algorithm scheme. High channel throughput and low packet delay are two 

important characteristics of a good backoff algorithm. A big problem of old backoff algorithm is that the 

throughput performances are unstable when the numbers of contending stations in service area is increased. The 

popular model for performance analysis of backoff algorithm is Bianchi’s model in [4]. The author in [4] 

proposed two-dimension discrete Markov chain model of binary exponential backoff (BEB) algorithm under the 

finite number of contending stations. Afterward, the author in [5] proposed the discrete Markov chain model of 

binary negative-exponential backoff (BNEB) algorithm. The performance of BNEB algorithm is better than BEB 

algorithm when the number of contending stations is larger than 4 stations. However, the transmission probability 

( ) in [4] and [5] are derived from the two-dimension discrete Markov chain model in general case (unlimited 

backoff stages and unlimited contention window sizes) so that the node’s packet transmission probability ( ) in 

general case is high complexity and  difficult understanding. The difference in this research is that the node’s 

packet transmission probability of each backoff algorithm is derived by used the Fixed Backoff stages and Fixed 

Contention window sizes (FBFC) scheme. In FBFC technique, the accuracy of transmission probability is 

derived from step by step procedure by used the global balance equation concept in discrete Markov chain 

theory. The limitation in this research, we assume that: 

• channel is ideal condition and no capture effect 

• channel is divided into time slots  of equal periods all contending stations  

• channel is saturated condition, and the collision probability ( p ) occurs when the WLAN channel 

has more than one contending stations  to transmit a packet in a same timeslot 

• the collision probability is constant and independent from the collision in the past 

• all stations know the total of station in service area 

• the transmission probability occurs when the contention window sizes are counted down to zero, 

and  the transmission probability is unknown and to be solved  

• data frame length is the same for all contending stations 

• the contending stations (n) are in the rang of each other  

• the contending stations are fixed and known 

The paper is organized as follows: In section II, we review discrete Markov chain model for IEEE802.11 WLAN. 

In section III, the fixed backoff stages and fixed contention windows technique is analyzed. In section IV, we 

introduce carrier sensing multiple accesses with collision avoidance protocol. The numerical results discuss in 

section V. Finally, section VI is the conclusion. 

2. Discrete Markov Chain Model 

2.1. The legacy of discrete Markov chain model or Bianchi’s model  

In 2000 year, Giuseppe Bianchi in [4] develops a simple discrete Markov chain model for the distributed 

coordination function mode in IEEE802.11 standards. Bianchi’s model is shown in Fig.1. The transmission 

probability that depends on the collision probability (p), the maximum backoff stages ( m ), and the contention 

window (CW) sizes is given by 

                                        
)])2(1()21[()21(

)1)(21(2
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                                      (1) 

In wireless local area network system, the packet collision occurs whenever more than one contending station or 

node tries to access the medium at the same timeslot. Backoff algorithm is a technique to solve the collision 

problems. In Bianci’s model, binary exponential backoff algorithm is used to reduce the data packet collision. At 

the first transmission of a contending node, if the channel is idle for more than a distributed coordination 

function inter-frame space (DIFS) time, a contending station can transmit immediately. If the channel is busy, the 

contending station will generate a random contention window sizes. 
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Fig. 1. Two dimension discrete Markov chain model in general form (Bianchi’s model) 

At the first transmission, the contention window size is selected equal to a minimum contention window sizes 

(CWmin). After ward, the contention window sizes are decreased from slot by slot during the idle period more 

than DIFS time. A contending station can send a data frame through wireless channel when the contention 

window sizes are counted down to zero. If the transmission is unsuccessful or the collisions happen, the 

contention window size is doubled for every transmission failure until it reaches the maximum contention 

window sizes (CWmax). During countdown process in backoff procedure, the contention window will pause if 

the channel is sensed busy. The backoff countdown process is reactivated when the channel is sensed idle more 

than DIFS time again. The contention window sizes iCW equal min2 CWi
, i = 0, 1, 2, 3…m, where i   is the 

number of backoff stage or the number of retransmissions. m  is the maximum backoff stages, so the maximum 

contention window size is min2 CWm
. If a destination or a receiver does not receives an acknowledgement frame 

within an acknowledgement timeout period after a data frame is transmitted, it will continue to retransmit the 

data frame according to the backoff algorithm. After a successful transmission, the contention window size is 

reset to the initial value (CWmin).   

2.2. Saturation Throughput 

The saturated throughput and packet delay are two the most parameters for performances analysis of wireless 

local area network. In [4], the author has represented the saturation throughput for a finite number of contending 

stations condition. The saturated throughput can be calculated by dividing the time utilized for transmitting a 

data packet (payload information) in a slot time by the average duration of a slot time.  The throughput equation 

is given by  
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                                      and                       StrC PPP  1  

Where                     
trP   = the probability that in a slot time there is at least one transmission 

                          
sP = the successful probability in a slot time 

                    
Str PP  = the probability of successful transmission 

                )1( trP  = the probability that a slot time is empty 

     StrC PPP  1  = the probability of collision transmission 

                         
CT = the collision transmission time in µs 

                        
ST  = the successful transmission time in µs 

                            MSDU  = the MAC service data unit size in bytes 

3. The Fixed Backoff  Stages and Fixed Contention Windows technique (FBFC technique) 

A new discrete Markov chain model uses fixed backoff stages and fixed contention windows (FBFC) 

technique. The relation of contention window sizes (CW) and backoff stages (i) in BEB algorithm can see in 

Figure 2. Similarly Bianchi’s model, we use binary exponential backoff (BEB) algorithm to solve the collision 

problem in wireless LAN channels. The contention window sizes in backoff mode are fixed in range minimum 

contention window sizes (CWmin) to maximum contention window sizes (CWmax). In this model, the CWmin 

is fixed at 8 timeslots, and the CWmax is fixed at 1024 timeslots. A contention window size depends on the 

collision probability and backoff stages (i) for a data frame transmission. In our model, the state probability of 

each backoff stages and contention window sizes are denoted by kib ,  where i  indicates the backoff stages, and 

k indicates the contention window sizes. The backoff stages i vary from 0 to 7 stages and the contention window 

sizes k vary from 0 to 1023 timeslots. Moreover, we consider the effect of the paused probability in countdown 

contention windows process. This phenomenon occurs when the channel is sensed busy because the other 

contending stations start to send a data packet. The countdown contention window process is paused until the 

channel is idle more than the period of DIFS again. Afterward, the countdown contention window process 

resumes. The paused probability is denoted
FP . 
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Fig. 2. The Fixed Backoff stages and Fixed Contention windows (FBFC) technique (proposed model) 

In figure 2, we use the global balance equation concept to derive the transmission probability. Firstly, we 

consider in case of backoff stage (i) = 0 and contention windows (k) = 7 timeslots. The state probability of  7,0b  

can be described by 
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Next step: in case of backoff stage (i) = 0 and contention windows (k) = 6 timeslots, the state probability of 6,0b  

can be described by 
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Substituting (6) in to (7), we get 
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From (6) and (8), at backoff stage (i) = 0 and contention windows (k) = 1 timeslots. We can summarize that the 

state probability of 1,0b  is given by 
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Next step: in case of i = 0 and k = 0, the state probability of 0,0b  is given by                         
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Substituting (9) in to (10) and simplifying the result, we get 
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Finally, the state probability of 0,0b  is  
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Next backoff state: in case of backoff states (i) = 1 and contention windows (k) = 15 timeslots. The state 

probability of 15,1b  can be described by                            
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bPF   

                            
   

 
  0,00,015,1

21

1

1152115
b

P

P

P

p
b

P

p
b

F

F

FF


















                                                       (12) 

Next step: in case of i =1 and k = 14, the state probability of 14,1b  is given by                               

                                      14,115,114,10,0 11
15

bPbPbPb
p

FFF   

                                                   15,10,014,1 1
15

21 bPb
p

bP FF   

                                                
 

 
  15,10,014,1

21

1

2115
b

P

P
b

P

p
b

F

F

F 





                                                       (13) 

Substituting (12) in to (13), we get 

                               
 

 
    0,00,014,1

211521

1

2115
b

P

p

P

P
b

P

p
b

FF

F

F
















  

                                             
 

 
  0,020,014,1

2115

1

2115
b

P

Pp
b

P

p
b

F

F

F 





                                    

                                             
 

 
   

 
  0,0

2

0,014,1
21

1

11521

1

115
b

P

P

P

p
b

P

P

P

p
b

F

F

FF

F

F






























  

                                      
 

 
  0,0

2

1

14,1
21

1

115
b

P

P

P

p
b

L

L F

F

F


















                                                          (14) 

Next step: in case of i =1 and k = 13, the state probability of 13,1b  is given by 

                                               13,014,113,10,0 11
15

bPbPbPb
p

FFF   



176 J. Sartthong et al.  / Proceeding - Science and Engineering (2013) 169–186 

                                                         14,10,013,1 1
15

21 bPb
p

bP FF   

                                                    
 

 
  14,10,013,1

21

1

2115
b

P

P
b

P

p
b

F

F

F 





     (15) 

Substituting (14) in to (15), we get      

     
 

 
   

 
   

 
  
















































 0,0

2

0,00,013,1
21

1

11521

1

11521

1

2115
b

P

P

P

p
b

P

P

P

p

P

P
b

P

p
b

F

F

FF

F

FF

F

F

       

       
 

 
   

 
   

 
  0,0

3

0,0

2

0,013,1
21

1

11521

1

11521

1

115
b

P

P

P

p
b

P

P

P

p
b

P

P

P

p
b

F

F

FF

F

FF

F

F













































           

                                             
 

 
  0,0

3

1

13,1
21

1

115
b

P

P

P

p
b

L

L F

F

F


















      (16) 

From (12) (14) and (16), we can summarize that the state probability of 1,1b  is given by 

                                              
 

 
  0,0

15

1

1,1
21

1

115
b

P

P

P

p
b

L

L F

F

F


















                                           (17) 

Next step: in case of i =1 and k = 0, the state probability of 0,1b  is expressed as                 

                                                    1,10,10,1 1
3131

1 bPb
p

b
p

F







  

                                                          1,10,1 1
3131

1 bPb
pp

F







  

                                                                                  1,10,1 1 bPb F                  (18) 

Substituting (17) in to (18), the state probability of 0,1b can be calculated by 

 
 

 
  




























 



15

1

0,00,1
21

1

115
1

L

L

F

F

F

F b
P

P

P

p
Pb  

                                              
 
  0,0

15

1

0,1
21

1

15
b

P

Pp
b

L

L F

F














                   (19) 

Next backoff state: in case of backoff state (i) = 2 and contention windows (k) = 31 timeslots, the state 

probability of 31,2b  can be described by    

                                                            31,231,20,1 1
31

bPbPb
p

FF   
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                                                                        0,131,2
31

21 b
p

bPF   

                                                                        
  0,131,2

2131
b

P

p
b

F
            (20) 

Next step: in case of i = 2 and k = 30, the state probability of 30,2b  is given by  

                                                     30,231,230,20,1 11
31

bPbPbPb
p

FFF   

                                                                 31,20,130,2 1
31

21 bPb
p

bP FF   

                                                           
 

 
  31,20,130,2

21

1

2131
b

P

P
b

P

p
b

F

F

F 





      (21) 

Substituting (20) in to (21), we get 

                                       
 

 
    0,10,130,2

213121

1

2131
b

P

p

P

P
b

P

p
b

FF

F

F
















  

                                                      
 

 
  0,120,130,2

2131

1

2131
b

P

Pp
b

P

p
b

F

F

F 





      

       
 

 
   

 
   

 
  0,1

2

1

0,1

2

0,130,2
21

1

13121

1

13121

1

131
b

P

P

P

p
b

P

P

P

p
b

P

P

P

p
b

L

L F

F

FF

F

FF

F

F
















































      (22) 

From (20) and (22), we can summarize that the state probability at i = 2 and k = 1 is given by 

                                                         
 

 
  0,1

31

1

1,2
21

1

131
b

P

P

P

p
b

L

L F

F

F


















      (23) 

In case of i = 2 and k = 0, the state probability of 0,2b  can be expressed by 

                                                         1,20,20,2 1
6363

1 bPb
p

b
p

F







  

                                                                1,20,2 1
6363

1 bPb
pp

F







  

                                                                                        1,20,2 1 bPb F      (24) 

Substituting (23) in to (24), we get 

 
 

 
  




























 



31

1

0,10,2
21

1

131
1

L

L

F

F

F

F b
P

P

P

p
Pb  
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 

 
  0,1

31

1

0,2
21

1

131
b

P

P

P

p
b

L

L F

F

F


















     (25) 

From (19) and (25), we can summarize that state probability at i = 3 and k = 0 is given by 

                                                      
 
  0,2

63

1

0,3
21

1

63
b

P

Pp
b

L

L F

F














      (26) 

Similarly: in case of i = 4 and k = 0, the state probability of 0,4b  is given by 

                                                     
 
  0,3

127

1

0,4
21

1

127
b

P

Pp
b

L

L F

F














      (27) 

Similarly: in case of i = 5 and k = 0, the state probability of 0,5b is given by 

                                                     
 
  0,4

255

1

0,5
21

1

255
b

P

Pp
b

L

L F

F














      (28) 

Similarly: in case of i = 6 and k = 0, the state probability of 0,6b  is given by 

                                                     
 
  0,5

511

1

0,6
21

1

511
b

P

Pp
b

L

L F

F














     (29) 

Next backoff state: in case of i = 7 and k = 1023, the state probability of  1023,7b  is given by 

                                               1023,71023,70,70,6 1
10231023

bPbPb
p

b
p

FF   

                                                            0,70,61023,7
10231023

21 b
p

b
p

bPF   

                                                    
    0,70,61023,7

211023211023
b

P

p
b

P

p
b

FF 



    (30) 

In case of i = 7 and k = 1022, the state probability of 1022,7b  is given by    

                                 1022,71022,71023,70,70,6 11
10231023

bPbPbPb
p

b
p

FFF   

                                                1023,70,70,61022,7 1
10231023

21 bPb
p

b
p

bP FF   

                                    
   

 
  1023,70,70,61022,7

21

1

211023211023
b

P

P
b

P

p
b

P

p
b

F

F

FF 








    (31) 

Substituting (30) in to (31), we get 

   
 
      





















 0,70,60,70,61022,7

21102321102321

1

11023211023
b

P

p
b

P

p

P

P
b

P

p
b

P

p
b

FFF

F

FF

 

                
 

 
   

 
  0,720,70,620,61022,7

211023

1

1102311023

1

211023
b

P

Pp
b

P

p
b

P

Pp
b

P

p
b

F

F

FF

F

F 













  
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 

 
   

 
  0,7

2

1

0,6

2

1

1022,7
21

1

1102321

1

11023
b

P

P

P

p
b

P

P

P

p
b

L

L F

F

F

L

L F

F

F

































   (32) 

From (30) and (32), we can summarize that the state probability of 1,7b  is given by 

                   
 

 
   

 
  0,7

1023

1

0,6

1023

1

1,7
21

1

1102321

1

11023
b

P

P

P

p
b

P

P

P

p
b

L

L F

F

F

L

L F

F

F

































   (33) 

Next step: in case of i = 7 and k = 0, the stage probability of 0,7b  can be expressed by   

                                            1,70,70,7 1
10231023

1 bPb
p

b
p

F







  

                                              1,70,7 1
10231023

1 bPb
pp

F







                

                                                                                    1,70,7 1 bPb F      (34) 

Substituting (33) in to (34), we get 

                                       
 

 
  0,7

1023

1

0,6

1023

1

0,7
21

1

102321

1

1023
b

P

Pp
b

P

Pp
b

L

L F

F

L

L F

F 



























    (35) 

From (19) (25) (26) (27) (28) (29) and (35), we assign 

                                      
 
 

L

L F

F

P

Pp
B 

















15

1 21

1

15
 ,         

 
 

L

L F

F

P

Pp
C 

















31

1 21

1

31
 

                               
 
 

L

L F

F

P

Pp
D 

















63

1 21

1

63
 ,         

 

L

L F

F

P

Pp
E 

















127

1 21

1

127
 

                             
 
 

L

L F

F

P

Pp
F 

















255

1 21

1

255
 ,         

 

L

L F

F

P

Pp
G 

















511

1 21

1

511
 

                          
 
 

L

L F

F

P

Pp
H 

















1023

1 21

1

1023
 

Therefore,   the state probability of (19) (25) (26) (27) (28) (29) and (35) can be rewritten by 

                                                       0,00,1 Bbb                                  (36) 

                                                        
0,00,10,2 BCbCbb          (37) 

                                                        
0,00,20,3 BCDbDbb            (38) 

                                                       0,00,30,4 BCDEbEbb          (39) 
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0,00,40,5 BCDEFbFbb        (40) 

                                                        
0,00,50,6 BCDEFGbGbb                                                                 (41) 

                                                        
0,70,60,7 HbHbb                                                                                (42) 

                                                         0,60,71 HbbH   

                                                        
0,60,7

)1(
b

H

H
b


                                                                                   (43) 

The equations (36) to (43) describe the backoff state probability ( kib , ) which is the function of the collision 

probability (p), the paused probability (
FP ) and the contention window sizes (CW). The transmission probability 

( ) occurs when the contention windows are decreased to zero. In saturation case, the summation of state 

probability ( 0,ib ) equals one. Finally, the new transmission probability ( ]mod[ elproposed ) of Binary Exponential 

Backoff algorithm in FBFC model is 
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Substituting (36) (37) (38) (39) (40) (41) and (43) in to (44), we get 
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Finally, the transmission probability of Binary Exponential Backoff algorithm is given by   
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Equation (47) is the transmission probability of a new discrete Markov chain model by using the fixed backoff 

stages and fixed contention window sizes technique. 

4. Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)  Protocol 

In wireless local area network channel, the medium access technique uses the CSMA/CA protocol in 

distribute coordination function (DCF) mode for IEEE802.11a/b/g standards. In CSMA/CA technique, there are 

two access methods: the first is Basic Access method (BA), and the second is Request-to-Send and Clear-to-Send 

(RTS/CTS) access methods. The RTS/CTS technique has been introduced to reduce the performance degradation 

due to hidden terminal, and this paper considers only the CSMA/CA protocol in RTS/CTS technique. A data 

frame exchange sequence of CSMA/CA with RTS CTS mechanism in IEEE802.11a/b/g standards is shown in 

Fig. 3. Before transmitting a data frame MSDU (MAC service data unit), a shot RTS frame is transmitted. If the 

RTS frame success, the receiver station responds with a shot CTS frame. Then, a data frame and an ACK frame 

will follow. All four frames (RTS, CTS, DATA and ACK) are separated by SIFS time. 
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Fig. 3. A data transmission procedure of CSMA/CA with RTS CTS Protocol 

Where                                DIFS = Distributed coordination function Inter Frame Space 

                 SIFS = Shot Inter Frame Space 

                 RTS = Request-to-Send frame 

                 CTS = Clear-to-Send frame 

                ACK = Acknowledgement frame 

             MSDU = MAC Service Data Unit frame 

The time periods of 
ST  and 

CT  for CSMA/CA with RTS CTS protocol are obtained as follows 

                 [ / ] ( )3 4S CSMA CA RTS CTS RTS SIFS delay CTS MSDU size ACK DIFST T T T T T T T                            (48) 

                                  delayRTSDIFSCTSRTSCACSMAC TTTT ]/[                                                (49) 

                                                         
rateData

MSDU
TMSDU

8
                                                                (50) 

From (2) (3) (4) and (5), a new saturated throughput equation of WLAN system in FBFC scheme can be 

rewritten as                    
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                                  and        ]mod[]mod[]mod[ 1 elFBFCSelFBFCtrelFBFCC PPP                                        (54) 

The comparison of throughput efficiency between Bianchi’s model and FBFC model use the same Physical layer 

parameters which listed in Table 1. The physical layer of IEEE802.11b is the direct sequence spread spectrum 

(DSSS), and the physical layer of IEEE802.11a and IEEE802.11g are the orthogonal frequency division 



182 J. Sartthong et al.  / Proceeding - Science and Engineering (2013) 169–186 

multiplexing (OFDM). MathCAD engineering tool in [6] uses for calculation the saturation throughput 

efficiency. The throughput calculation procedure is given by 

Begin 

 Step 1: Fixed parameters p : = 0.05, 
FP : = 0.05, m : = 6, MSDU: = 1024 and n : =  1..40 

                           CW : = 31, 63, 127, 255, 511and 1023 

              Step 2: calculated 
]/[ CTSRTSCACSMAST  by used equation (48) and (50) 

 Step 3: calculated 
]/[ CTSRTSCACSMACT by used equation (49) 

 Step 4: calculated ]mod'[ elsBianchi  by used equation (1) 

 Step 5: calculated 
trP  of Bianchi’s model by used equation (4) 

              Step 6: calculated 
SP  of Bianchi’s model by used equation (5) 

              Step 7: calculated the saturated throughput of Bianchi’s model by used equation (3) 

              Step 8: calculated ]mod[ elFBFC  by used equation (47) 

 Step 9: calculated 
trP  of the Fixed Backoff stages and Fixed contention windows model 

                            (FBFC model) by used equation (52) 

              Step 10: calculated 
SP  of the Fixed Backoff stages and Fixed contention windows model  

                            (FBFC model) by used equation (53) 

              Step 11: calculated the saturated throughput of proposed model by used equation (51) 

End 

Table 1. The transmission times in CSMA/CA RTS CTS Protocol [1], [2], [3], [6] and [7] 

Transmissions description                   IEEE802.11a                  IEEE802.11b               IEEE802.11g   

                                                                                                                                                                                

                
SIFST                                             16 µs                                10 µs                              10 µs 

                
DIFST                                            34 µs                                50 µs                              28 µs 

                
aSlotTimeT                                        9 µs                                 20 µs                                9 µs 

                
delayT                                             1 µs                                   1 µs                                1 µs 

    
RTST OFDM 24-Mbps                             28 µs                                    -                                  34 µs 

    
CTST OFDM 24-Mbps                             28 µs                                    -                                  32 µs 

    
ACKT OFDM 24-Mbps                            28 µs                                    -                                  32 µs 

    
RTST OFDM 54-Mbps                             24 µs                                    -                                  30 µs 

    
CTST OFDM 54-Mbps                             24 µs                                    -                                  30 µs 

    
ACKT OFDM 54-Mbps                            24 µs                                     -                                 30 µs 

    
RTST HR 11-Mbps                                     -                                      352 µs                             -    

    
CTST HR 11-Mbps                                     -                                      304 µs                             -    

    
ACKT HR 11-Mbps                                    -                                      304 µs                             -     

          CWmin                                        15 SlotTimes                     31 SlotTimes                  16 SlotTimes 

          CWmax                                     1023 SlotTimes                  1023 SlotTimes              1024 SlotTimes  
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5. Numerical Results 

In this section, the numerical results show the saturated throughput of a new discrete Markov chain models 

(FBFC technique) and the saturated throughput of a legacy model (Bianchi’s model). In our computer 

simulations, the physical layer parameters in saturated throughput equations use the same parameters as [6] and 

[7]. The important parameter of this research is the transmission probability ( ) that is derived from a new 

discrete Markov chain model ( ]mod[ elFBFC ) and Bianchi’s model ( ]mod'[ elsBianchi ). The transmission 

probability is the key for the comparison saturation throughput performance between Bianchi’s model and FBFC 

model. In both model, the contention windows vary from 15 to 1024 timeslots, and the numbers of contending 

stations vary from 1 to 40 stations, and the backoff states vary from 0 to 7 stages.  Also, the collision probability 

( p ), the paused station probability (
FP ), and the MAC service data unit sizes are fixed at 0.05, 0.05 and 1024 

bytes, respectively. First of all, figure 4 shows the comparison saturated throughput by using the physical layer 

parameters in IEEE802.11b standard which based on direct sequence spread spectrum (DSSS).  
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Fig. 4. Throughput performance of the Fixed Backoff stages and Fixed Contention windows technique in IEEE802.11b standard 

From the results in Fig.4, when the contention windows are fixed at 31, 63 and 127 timeslots, and the 

contending stations are varied from 1 to 20 stations, the saturated throughput of the legacy model (Bianchi’s 

model) is better than the FBFC model (proposed model). However, when the contending stations are fixed at 

255, 511 and 1023 timeslots, the throughput performance of FBFC model is higher than the Bianchi’s model. 

Afterward, when the contending stations are varied from 21 to 40 stations, the saturated throughput of FBFC 

model is stable and equal as the Bianchi’s model. Surprisingly, when the contention windows are 31 and 63 

aTimeSlots, the throughput of Bianchi’s model seems to reduce quickly, but the saturated throughput of FBFC 

model seems to be stable. Therefore, from the results, we can summarize that the FCFB model is suitable than 

the Bianchi’s model in heavy traffic load condition. 

Afterward, the figure 5 and 6 show the comparison throughput efficiency between FBFC model and 

Bianchi’s model in IEEE802.11a and IEEE802.11g standards. The physical layers are based on the orthogonal 
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frequency division multiplexing (OFDM), where the data speed of 802.11a is fixed at 24 Mbps and data speed of 

802.11g is fixed at 54 Mbps. Similarly, when the contending stations are varied from 1 to 22 stations, and the 

contention windows are fixed at 31, 63 and 127 timeslots, the throughput efficiency of Bianchi’s model is higher 

than the FBFC model. On the contrary, when the contention windows are fixed at 255, 511 and 1023 timeslots, 

the saturated throughput efficiency of FBFC model is higher than the Bianchi’s model. From the saturated 

throughput in Fig. 4, Fig.5 and Fig.6, we can summarize that the transmission probability of proposed model 

( ]mod[ elFBFC ) is the average of Bianchi’s model. Furthermore, we also conclude that the new discrete Markov 

chain model is derived from the fixed backoff stages and fixed contention windows technique have a good 

throughput at high contending stations condition.    
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Fig. 5. Throughput performance of the Fixed Backoff stages and Fixed Contention windows technique in IEEE802.11a standard 
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IEEE802.11g OFDM 54 - Mbps [p=0.05, PF=0.05, MSDU=1024 bytes]
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Fig. 6. Throughput performance of the Fixed Backoff stages and Fixed Contention windows technique in IEEE802.11g standard 

Obviously, the results in Fig.5 and Fig. 6 show that when the contending stations are increased, the saturated 

throughput of Bianchi’s model is reduced at less contention window sizes.  However, the saturated throughput of 

FBFC model is increased up to the stable point. 

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Nunber of contending stations

Su
cc

ess
fu

l tr
an

sm
iss

ion
 pr

ob
ab

ilit
y (

Ps
)

Bianchi model CW = 31 aTimeSlots
Bianchi model CW = 63 aTimeSlots
Bianchi model CW = 127 aTimeSlots
Bianchi model CW = 511 aTimeSlots
Bianchi model CW = 1023 aTimeSlots
Proposed model (FBFC technique)

 

Fig. 7. The successful transmission probability of the Fixed Backoff stages and Fixed Contention windows technique  

Figure 7 shows the effect of the number of contending stations on successful transmission probability. From the 

figure, the successful probability of Bianchi’s model gets higher than Fixed Backoff stages and Fixed Contention 
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windows model when the contention windows are set at 511 and 1023 timeslots. Dramatically, when the 

contention windows are set at 31, 63 and 127 timeslots, the successful transmission probability of Bianchi’s 

model seems to reduce quickly, but the successful transmission probability of FBFC model seems to reduce 

little. In addition, when the contention windows are set at 31 to 1023 timeslots, the simulation results indicate 

that the successful transmission probability (Ps) of FBFC model is the average of Bianchi’s model.      

6. Conclusion 

In this research, we introduce a new discrete Markov chain model to calculate the transmission probability in 

distributed coordination function for wireless local area network system, and it’s called the Fixed Backoff stages 

and Fixed Contention windows technique. The transmission probability parameters of FBFC model 

( ]mod[ elFBFC ) and Bianchi’s model ( ]mod'[ elsBianchi ) in saturated throughput equations are two important 

parameters for the throughput performance comparison in DCF IEEE802.11a/b/g WLAN standards. Moreover, 

the transmission probability of FBFC model which is derived from fixed backoff stages and fixed contention 

windows scheme is the average point of Bianchi’s model under the same contention windows range (minimum 

contention windows to maximum contention windows rang). Our numerical results show that the performance of 

proposed model (FBFC model) is stable under a lot of contending stations condition, and all numerical results 

guarantee that the performance of FBFC model well operates under saturated coordination function for wireless 

local area network system. In future work, we will evaluate the performance of FBFC model under non-

saturation WLAN channel, and we will search for a new backoff algorithm which will have the performance 

better than the legacy backoff scheme under the fixed backoff stages and fixed contention windows concept. 
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