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Abstract 

A double inverted pendulum system which is nonlinear and unstable is modified by connecting the mass carrying it with an 

additional spring. Also, the control input is applied to the additional mass instead of the mass carrying the pendulum. The 

new system is a linear spring connected double inverted pendulum as proposed by Hou et al.[1] and [2]. Therefore, according 

to this modification, the original double inverted pendulum system becomes more complicated and challenging problem in 

the nonlinear control and stabilization area. Fortunately, even though the linear spring connected double inverted pendulum is 

a nonlinear problem as a general double inverted pendulum, the system can be approximated and simplified as a linear time 

invariant system by the linearization of the equilibrium point. Therefore, many techniques in linear full state feedback control 

can be applied to stabilized the system such as PID control, LQR, etc. instead of using nonlinear control which is more 

complicated.  However, in practical usage, all state variables are not measurable or in some situations the designer intends to 

reduce the number of measurement signals for economic reason. The purpose of this paper is to show that an LMI-based 

output feedback method can be used to stabilize to system when all state variables are not all available. The LMI-based 

output feedback method is applied to solve an example of linear spring connected double inverted pendulum and compared 

with LQR method. Finally, the simulation results of both methods are shown and discussed.    

Keywords:  LMI-based output feedback, a linear spring connected double inverted pendulum, optimal control, and  LQR technique. 

1. Introduction 

A challenging problem, a linear spring connected double inverted pendulum as proposed in Hou et al. [1,2] 

and Hongxing [5], is constructed by modifying a double inverted pendulum system which is nonlinear and 

unstable system. The modification is done by connecting an additional mass to the mass carrying a double 

inverted pendulum with a linear spring. With this modification the original double inverted pendulum system 

become more complicated and interesting problem [5] in nonlinear control area. Many techniques in nonlinear 

control can be applied to stabilize the system; however, the system can be simplified by linearization at the 
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equilibrium point.  With the aid of linearization of the system, the simple techniques in modern control and 

optimal control system can be made available to solve this problem. Examples are the LQR, PID control.  

Furthermore, the problem can be considered as a dynamic optimization problem as proposed in [2].  In reality, 

the important aspect is that not all state variables are measureable, or in some situations, the designers intend to 

reduce the number of measurement signals for economic reasons.  Therefore, some techniques such as full state 

feedback, LQR, etc., may not be appropriate in this situation. LMI-based output feedback is the appropriate 

method in order to stabilize the linearized system.  

In this paper, first, a mathematical model representing the linear spring connected inverted pendulum is 

provided.  Next, the methodology part about optimal control using the LMI-based output feedback is stated. 

Then, the simulation results of both LQR and the LMI-based output feedback are presented. Finally, discussions 

and conclusions are stated.   

2. A Linear Spring Connected Double Inverted Pendulum System  

2.1 Mathematical Model 

There is a linear spring connected double inverted pendulum as proposed by Hou et al.[1, 2] and Hongxing [5] 

as shown in figure1. The system contains 4 degree of freedoms which are angles of double inverted pendulum 

and displacements of carts. The mathematical model representing behavior of the system can be constructed 

based by using Lagrange equation or Newton’s Law as shown in  Eq. (1) ,Hou et al.[1, 2].   

 

Fig. 1. A Linear spring Connected Double  Inverted Pendulum System 
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where 3m mass of cart 3, 4m mass of cart 4,
 0c  friction factor, c  tack coefficient, and

 
( )u t  control 

input. 
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2.2  Problem Statement 

The system can be written in the form of state space which is suitable for applying optimal control 

techniques. The state variables can be defined as 31 xz  , 42 xz  , 13 z , 24 z , 35 xz  , 46 xz  , 

17 z ,and 28 z . Then, the equation of motion in Eq. (1) can be converted in the form of a first order 

differential equation, ))(),(( tutzfz   where
 1 2 3 4 5 6( ) [ , , , , , ]Tz t z z z z z z . After linearization, the corresponding 

linear system can be expressed in the state space form as 
 

                                                          

.

z Az Bu   
and y Cz Du 

    
(2) 

where u(t) = control input,
 
y(t) = output variable,  A = State matrix, B = input matrix,  C = Output matrix and D 

= input-to-output coupling matrix. 
 

3. LMI-Based Output Feedback Control  

The LMI-Based Output Feedback is a suitable method to stabilize the linear spring connected double inverted 

pendulum as expressed in (1) when not all state variables are  not measurable, or the number of output is reduced 

by the intension of the designers.  

A linear matrix inequality (LMI) is regarded as a convex constraint. Consequently, optimization problems 

with convex objective functions and LMI constraints are solvable relatively efficiently with off-the-shelf 

software, i.e., MATLAB LMI Control Toolbox. The form of an LMI is very general. Linear inequalities, convex 

quadratic inequalities, matrix norm inequalities, and various constraints from control theory such as Lyapunov 

and Riccati inequalities can all be written as LMIs. Further, multiple LMIs can always be written as a single LMI 

of larger dimension. Thus, LMIs are a useful tool for solving a wide variety of optimization and control 

problems. In this paper, an output feedback controller design based on [3]-[4] can be constructed in terms of 

LMIs constraints. 

3.1 Output Feedback Controller Design 

The linearized systems are derived in the previous section and designed to achieve the performance 

requirements given in the Problem Statement by using a full order output feedback controller. We use an LMI-

based controller design methodology to achieve the following. 

Theorem For the linearized system, the closed-loop system can accomplish the expected performance 

requirements: All closed-loop poles are located in the open left-half plane if and only if there exist symmetric 

matrices X , Y  and matrices A , B , C , and D  such that the following LMIs simultaneously satisfied. 
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for X and Y  symmetric matrices, YX   means YX   is positive definite. A dynamic output feedback 

controller can be constructed as follows: 
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1))((:  T

yKK MXCDCC  

   DDK :  

where X and Y  are arbitrary nonsingular matrices satisfying XYIMN T  .The details of proof is purposed 

by Chilali and Gahinet [3]. 

4. Simulation Results and Discussion  

The feasibility of the LMI-based output feedback method can be shown by simulation results of the example 

of linear spring connected double inverted pendulum.  In the simulation, the LMI-based output feedback method 

is  applied to  solve an example of  linear spring  connected double inverted  pendulum and  compared with LQR 

method.  The implementation is done in  MATLAB, and  the  simulation  results  of  both  methods  are  shown  

and  discussed.     

The example of a linear spring connected double inverted pendulum system is defined by letting the 

parameters of the system as follows: 
1 0.25m  kg, 

2 0.25m  kg, 3 1.5m  kg, 
4 1.5m  kg, 0 0c  , 0c  , 

1 0.4l  m,
1 0.0033CJ  kg.m

2
,
 1 0.2Cl  m, 1 0.05c  ,

2 0.4l  m,
2 0.0033CJ  kg.m

2
,

2 0.2Cl  m, 
2 0.05c  , 

100k  N/m, 9.81g  m/s
2
   in appropriate SI units.   

This example consists of two parts which represents different situations in reality. First, the displacement of 

both carts and the angular displacement of pendulums are measurable, thus the output signals are 

311 xzy  , 422 xzy  , 133  zy  and
 443  zy .  Second, the displacements and velocities of both 

carts are the output signal which are 311 xzy  , 422 xzy  , 353 xzy   and 464 xzy  . 

For  the first part of the example, the simulation  results given  by  both  LMI  based  output  feedback  and 

LQR methods which are time response of measureable state variables, 31 xz  , 42 xz  , 13 z  and
 44 z  

are shown in Fig 4  in blue curves and red dash curves respectively.  The poles of the close loop control  system 

of  LMI  based  output  feedback  method  located on  the  left  half  plane  as  shown in     Fig 3. Using control 

input signal of the LMI-based output feedback method as shown in Fig 3 can stabilize the system. 
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Fig. 2.  Poles of the close loop control system of LMI-based output feedback method when the output signals are 1 3,z x
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Fig. 3.  A control input signal of  the LMI-based output feedback method when the output signals are 1 3,z x
 2 4 ,z x
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Fig. 4. Time responses of state Variables of 
,1z ,2z 3z

and 4z
 of the LMI-based output feedback method(blue curves) and 

LQR method( red dash curves) when the output signals are 1 3,z x 2 4 ,z x
13 z

and 24 z
 

Next, When measurement signal are only the displacements and the velocities of the carts, the output signal 

are 31 xz  , 42 xz  , 35 xz  ,and 46 xz  .  The location of poles of the closed loop system of LMI-based output 

feedback  are also on the  left  half  plane  presented  in Fig 5. The control  input signal of LMI-based  output 

feedback using to stabilize the system is shown in Fig 6. The  time responses of interesting  state  variables  

corresponding  to displacements of  the carts and the angles of the double inverted  pendulum  given  by  LMI 

based  output  feedback  and  LQR  methods  are  shown  in  Fig 7 in blue  curves  and  red dash curves 

respectively. The  time  responses  of  output  signals  given  by  LMI based  output  feedback  and  LQR  

methods  are  shown  in Fig 8. 

First, considering the simulation when the output signal are 11 zy  , 22 zy  , 33 zy  , 43 zy  , the LQR 

method can stabilized as the values of state variables 13 z  and 24 z  converge to zero . However, the carts 

are not at the equilibrium point at the steady state as the state variables 31 xz   and 42 xz   approach to finite 

values.  Considering the simulation results given by LMI output feedback method, it is clear that LMI based 

output feedback method can stabilize the system as all values of state variables, 31 xz  , 42 xz  , 13 z  and 

24 z  converge to zero at the steady state. Therefore, it is shown that the LMI-based output feedback can 

stabilize the system at the equilibrium point. 

Second, in the situation when output signal are 31 xz  , 42 xz  , 35 xz  ,and 46 xz  , the LMI-based output 

feedback and the LQR method have the simulation results in the same way as follows. The time responses to 

angles of the double inverted pendulum of the system, 13 z  and 24 z  , given by LMI-based output 

feedback converge to equilibrium point at zero as time increases. Even though the time responses corresponding 

to displacements of carts, 13 z  and 24 z , do not converge to zero at steady state,  both  signals  converge 

to  finite  value.  However,  considering the  displacements of the  carts at steady  state,  the  time  responses  of   
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the LMI-based output feedback  approach  closer to  equilibrium  point  at  zero  than  that  of   the LQR method. 

This  is  shown  clearly  in Fig 7 and  Fig 8.  

As  simulation results  of  both  parts  of  the  example,  it  is clear  that LMI based output can stabilize the  

system  and  performs better than the LQR method. Also for economically reasons, the LMI-based output  

method  requires  lower number  of  measurement  signals  than  the  LQR  method  does. 
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Fig. 5.  Poles of the close loop control system of LMI-based output feedback method when the output signals are 
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Fig. 6.  A control input signal of  the LMI-based output feedback method when the output signals are 31 xz 
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Fig. 7. Time responses of state Variables of 
,1z ,2z 3z

and 4z
 of the LMI-based output feedback method (blue curves) and 

LQR method( red dash curves) when the output signals  are 1 3,z x
 2 4 ,z x
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Fig. 8. Time responses of output signal  of Z1 ,Z2, ,Z5 ,and Z6  of the LMI-based output feedback method (blue curves) and 

LQR method( red dash curves) . 

5. Conclusions 

Considering the simulation results, the following conclusions are considered:   

First, the LMI-based output feedback is feasible to stabilize the mass spring connected double inverted 

pendulum system.  

Second, the LMI-based output method performs better and more efficiently than the LQR does. The 

confirmations of this are as follows. The LMI-based output feedback drives all state variables converging to zero 
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at steady state when the output signals are displacements of the carts’ angles of the double inverted pendulum. 

Also, when the measurable signals are the displacements and velocities of the carts, at steady state both methods 

can stabilize the angles of the double inverted pendulum at equilibrium point, while, the displacements of the 

carts converge to finite value. However, the time responses of displacements of the carts given by LMI-based 

output feedback are closer to equilibrium point than that of the LQR method.  

Third, the LMI-based output feedback requires lower number of measurement signals. Therefore, it is 

appropriate to apply an optimal control using LMI-based output feedback stabilize to a linear spring connected 

double inverted pendulum system for both efficiency and economical reasons. 
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