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Abstract 

A modified double inverted pendulum – modified by connecting the mass carrying the pendulum with another mass through a 

spring - makes the general inverted pendulum become a more interesting problem.  The system is defined as a linear spring 

connected double inverted pendulum as proposed by Hou et al. [1],[2]. The system is highly nonlinear and unstable.  

However, the system can be simplified to a linear control problem through the linearization of a pre-specified equilibrium 

point such as the upright position of the double pendulum. Therefore, the linearized system allows the designer to apply 

various techniques of control methods to stabilize the system such as classical PID controller, LQR, etc. Practically, the 

system is unavoidably affected by an exogenous disturbance. The robust control technique is an appropriate method to deal 

with this situation.  Also, if the energy of the disturbance is bounded, therefore, one can apply the popular robust H infinity 

control to solve this problem.  Then, the H infinity controller is applied to an example of the linear spring connected double 

pendulum compared with LQR method through simulation.     
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1. Introduction 

A modified double inverted pendulum – modified by connecting the mass carrying the pendulum with another mass 

through a spring - makes the general inverted pendulum become a more challenging problem. The system is unstable and 

highly nonlinear as general double inverted pendulum systems [1], [2] and [7]. Therefore, the system can be used 

as a test problem for various control techniques.  Even though the system is nonlinear, a linearization can be used 

to simplify the system as a linear time invariant system at an equilibrium point; upright position of the double 

inverted pendulum. This approximation allows many linear control techniques to be applied to control and 
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stabilize this system. However, in practicality, the control system will suffer and will be affected by the 

disturbance. In a situation where the energy of disturbance is bounded, the appropriate controller to stabilize a 

linear time invariant system under disturbance is H infinity controller. This method was used by Tsachouridis     

et al.[4] to stabilize the triple inverted pendulum system. 

2. A Linear Spring Connected Double Inverted Pendulum System    

2.1 Mathematical Model 

A linear spring connected double inverted pendulum as purposed by Hou et al.[1, 2] and Hongxing [5] as 

shown in figure1. The system contains 4 degree of freedoms which are angles of double inverted pendulum and 

displacements of carts.  The mathematical model representing behavior of the system can be constructed based 

by using Lagrange equation or Newton’s Law as shown in  Eq. (1) ,Hou et al.[1, 2].   

 

Fig. 1. A Linear spring Connected Double  Inverted Pendulum System 
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           (1)

 

where 3m mass of cart 3, 4m mass of cart 4,
 0c  friction factor, c  tack coefficient, and

 ( )u t  control 

input. 

2.2 Problem Statement 

By letting 1 3z x , 2 4z x , 3 1z  , 4 2z  , 35 xz  , 46 xz  , 17 z ,and 28 z ,the equation of 

motion in Eq. (1) can be converted in the form of a first order differential equation, ))(),(( tutzfz   where
 



212 A. Boonyaprapasorn et al.  / Proceeding - Science and Engineering (2013) 210–219 

Tzzzzzzzztz ],,,,,,,[)( 87654321 . Approximating by linearization, the linear system  can be expressed in 

the state space form as 
 

                                        

.

z Az Bu 
 
and y Cz Du 

      
(2) 

where u(t) = control input,
 
y(t) = output variable,  A = State matrix, B = input matrix,  C = Output matrix  and 

D = input-to-output coupling matrix. 
 

3. H Infinity Control Design Method 

The key idea of H-infinity design is to synthesize optimal full information controller that minimizes infinity 

norm of the closed loop system between disturbance and input.  The optimal control problem is considered as a 

dynamic optimization problem, a mini-max problem. It is under the condition that information of all states and 

disturbance input are available for feedback [5-6]. The objective function is defined as a cost function, J and 

optimization variables are disturbance, ( )w t and output, ( )y t as shown in Eq.(4). Also, the state space of the 

system is considered as dynamic constraints.  This can be shown as follows. 
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.

u wz Az B u B w    and 
 y yuy C z D u                                    (4)  

After solving the Hamiltonian equation corresponding to from Eq.(3) and Eq.(4), the suboptimal control can 

be determined as   

              ( ) ( ) ( )u t K t z t                                                          (5)  

where ( ) T

uK t B P and a matrix ( )P t is the solution of the Riccati differential equation as shown in Eq(6).  

                             ( ) 0T T T T

u u w w y yPA A P P B B B B P C C                                                         (6) 

for H sub optimal control under the condition that  

         

2( )T T

u u w wA B B B B P                                                            (7) 

is stable. The details are proposed  in  many  textbooks  Burl [5],  Helton  et al.[3], Tsachouridis  et al.[4], and 

Skpgestal  and  Postlethwaite [6].  

4. Simulation and Results 

     The feasibility of H-infinity controller design method can be shown by the simulation results of applying     

H-infinity controller to stabilize the example of a linear spring connected double inverted pendulum under the 

disturbance. Then, the simulation results of H infinity method and the LQR method are compared and discussed.  

The simulation is implemented in MATLAB software. The example of a linear spring connected double inverted 

pendulum system is defined by specifying the parameters of the system as follows:  

 
   1 0.25m  kg, 

2 0.25m  kg, 3 1.5m  kg, 
4 1.5m  kg, 0 0c  , 0c  , 1 0.4l  m,

1 0.0033CJ  kg.m
2
,
     

    1 0.2Cl  m, 1 0.05c  ,
2 0.4l  m,

2 0.0033CJ  kg.m
2
,

2 0.2Cl  m, 
2 0.05c  , 100k  N/m, 

 

    
9.81g  m/s

2
   in appropriate SI units.   



 A. Boonyaprapasorn et al. / Proceeding - Science and Engineering (2013) 210–219 213 

     Both controller design methods are tested by two disturbance signals which are bound energy. First, 

disturbance is in the form of Eq.(8.1) and Eq.(8.2).           

                                             

 

 

 

                                                      (8.1) 

 

where, 1A  , 3a  , 6b  ,and 9c  as  shown in Fig 2.  

   

                                                            (8.2) 

where, 1A  , 0.8a  , 10b  ,and 0  as  shown in Fig 2.  

     In the first situation the system is affected by a disturbance as  Eq.(8.1).  The H-infinity feedback control 

system is stable, since all poles or eigenvalues of 
2( )T T

u u w wA B B B B P  are located on the left half plane 

as shown in Fig 3.  The numerical solution of Riccati’s Equation is shown in Eq.(9).    
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Eigenvalues of P , ( )P , are  
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Fig. 2. (a) A Disturbance signal, 1( )w t
;  (b) A Disturbance signal, 2 ( )w t
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Fig. 3.  Poles of the H-infinity  feedback  control system 

The control input signal of H-infinity controller is shown in Fig 4.  All time response of state variables  of   

H-infinity and LQR  methods  under  the  disturbance  signal  are  presented  in Fig 3.  The blue dash curves and 

magenta curves in Fig 3 represent the time responses of all state variables corresponding to H-infinity and LQR 

respectively. The time responses of state variables of Z1, Z2,, Z3, Z4, Z5 and Z6, corresponding  of  to  H-infinity  

and  LQR  method  approach  to  zero  at  steady  state.  However,  the   time  responses  of  Z7  and  Z8  given  by  

both  methods  oscillate  with  bound  around  the equilibrium point  at  zero,  and  the  amplitudes of oscillation 

of H-infinity method are smaller than those of  LQR method slightly.  Considering time responses of state 

variables  Z1, Z2, Z3, Z4, Z5, Z6, Z7 and Z8, H-infinity  and  LQR controller can stabilize the system since the 

steady state responses of each state variable  from  both  methods  are  almost  the  same.   
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Fig. 4. control input signal of H-infinity feedback control system under a disturbance signal, 1( )w t
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Fig. 5. (a) Time response of state variables of 
,1z ,2z 3z

and 4z
of the H-infinity method  (in blue dash curves) and the LQR method(in 

magenta curves) under a disturbance signal, w1(t); 

           (b) Time response of state variables of 
,5z ,6z 7z

and 8z
of the H-infinity method  (in blue dash curves) and the LQR method(in 

magenta curves) under a disturbance signal, w1(t) 
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Fig. 6. A control input signal of H-infinity feedback control system under a disturbance signal, 2 ( )w t
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Fig. 7. (a) Time response of state variables of 
,1z ,2z 3z

and 4z
of the H-infinity method  (in blue dash curves) and the LQR method(in 

magenta curves) under a disturbance signal, w2(t); 

           (b) Time response of state variables of 
,5z ,6z 7z

and 8z
of the H-infinity method  (in blue dash curves) and the LQR method(in 

magenta curves) under a disturbance signal, w2(t) 

5. Conclusions 

      H-infinity controller is feasible and appropriate to control and stabilize a mass spring connected double 

inverted pendulum system under the finite energy disturbance as shown and discussed above. Comparison 

between H-infinity controller and LQR controller shows that H-infinity controller performs better than LQR does. 
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